136 research outputs found

    Representation of decision-making in European agricultural agent-based models

    Get PDF
    The use of agent-based modelling approaches in ex-post and ex-ante evaluations of agricultural policies has been progressively increasing over the last few years. There are now a sufficient number of models that it is worth taking stock of the way these models have been developed. Here, we review 20 agricultural agent-based models (ABM) addressing heterogeneous decision-making processes in the context of European agriculture. The goals of this review were to i) develop a framework describing aspects of farmers' decision-making that are relevant from a farm-systems perspective, ii) reveal the current state-of-the-art in representing farmers' decision-making in the European agricultural sector, and iii) provide a critical reflection of underdeveloped research areas and on future opportunities in modelling decision-making. To compare different approaches in modelling farmers' behaviour, we focused on the European agricultural sector, which presents a specific character with its family farms, its single market and the common agricultural policy (CAP). We identified several key properties of farmers' decision-making: the multi-output nature of production; the importance of non-agricultural activities; heterogeneous household and family characteristics; and the need for concurrent short- and long-term decision-making. These properties were then used to define levels and types of decision-making mechanisms to structure a literature review. We find most models are sophisticated in the representation of farm exit and entry decisions, as well as the representation of long-term decisions and the consideration of farming styles or types using farm typologies. Considerably fewer attempts to model farmers' emotions, values, learning, risk and uncertainty or social interactions occur in the different case studies. We conclude that there is considerable scope to improve diversity in representation of decision-making and the integration of social interactions in agricultural agent-based modelling approaches by combining existing modelling approaches and promoting model inter-comparisons. Thus, this review provides a valuable entry point for agent-based modellers, agricultural systems modellers and data driven social scientists for the re-use and sharing of model components, code and data. An intensified dialogue could fertilize more coordinated and purposeful combinations and comparisons of ABM and other modelling approaches as well as better reconciliation of empirical data and theoretical foundations, which ultimately are key to developing improved models of agricultural systems.Swiss National Science Foundatio

    Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework

    Get PDF
    Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes

    Adapting to climate-change-induced drought stress for improving water management in Southeast Vietnam

    Get PDF
    In Southeast Vietnam, droughts have become more frequent, causing significant damage and impacting the region’s socio-economic development. Water shortages frequently affect the industrial and agricultural sectors in the area. This study aims to calculate the water balance and the resilience of existing water resource allocations in the La Nga-Luy River basin based on two scenarios: (1) business-as-usual and (2) following a sustainable development approach. The MIKE NAM and MIKE HYDRO BASIN models were used for Rainfall-Runoff (R-R) and water balance modelling, respectively, and the Keetch-Byram Drought Index (KBDI) was used to estimate the magnitude of droughts. The results identified areas within the Nga-Luy River basin where abnormally dry and moderate drought conditions are common and subbasins, i.e., in the Southeast and Northeast, where severe and extreme droughts often prevail. It is also shown that the water demand for the irrigation of the Winter-Spring and Summer-Autumn crop life cycles could be fully met under abnormally dry conditions. This decreases to 85–100% during moderate droughts, however. In contrast, 65% and 45–50% of the water demand for irrigation is met for the Winter-Spring and Summer-Autumn crop life cycles, respectively, during severe and extreme droughts. Furthermore, this study demonstrates that the water demand for irrigation could still be met 100% and 75–80% of the time during moderate, extreme, and severe droughts, respectively, through increased water use efficiency. This study could help managers rationally regulate water to meet the agricultural sector’s needs in the region and reduce the damage and costs caused by droughts

    Monitoring and modelling landscape dynamics

    Get PDF
    International audienceChanges in land cover and land use are among the most pervasive and important sources of recent alterations of the Earth's land surface.This special issue also presents new directions in modelling landscape dynamics. Agent-based models have primarily been used to simulate local land use and land cover changes processes with a focus on decision making (Le 2008; Matthews et al. 2007; Parker et al. 2003; Bousquet and Le Page 2001)

    Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hormesis is a biphasic biological response characterized by the stimulatory effect at relatively low amounts of chemical compounds which are otherwise detrimental at higher concentrations. A hormetic response in larval growth rates has been observed in cotton-feeding insects in response to increasing concentrations of gossypol, a toxic metabolite found in the pigment glands of some plants in the family Malvaceae. We investigated the developmental effect of gossypol in the cotton bollworm, <it>Helicoverpa armigera</it>, an important heliothine pest species, by exposing larvae to different doses of this metabolite in their diet. In addition, we sought to determine the underlying transcriptional responses to different gossypol doses.</p> <p>Results</p> <p>Larval weight gain, pupal weight and larval development time were measured in feeding experiments and a hormetic response was seen for the first two characters. On the basis of net larval weight gain responses to gossypol, three concentrations (0%, 0.016% and 0.16%) were selected for transcript profiling in the gut and the rest of the body in a two-color double reference design microarray experiment. Hormesis could be observed at the transcript level, since at the low gossypol dose, genes involved in energy acquisition such as β-fructofuranosidases were up-regulated in the gut, and genes involved in cell adhesion were down-regulated in the body. Genes with products predicted to be integral to the membrane or associated with the proteasome core complex were significantly affected by the detrimental dose treatment in the body. Oxidoreductase activity-related genes were observed to be significantly altered in both tissues at the highest gossypol dose.</p> <p>Conclusions</p> <p>This study represents the first transcriptional profiling approach investigating the effects of different concentrations of gossypol in a lepidopteran species. <it>H. armigera</it>'s transcriptional response to gossypol feeding is tissue- and dose-dependent and involves diverse detoxifying mechanisms not only to alleviate direct effects of gossypol but also indirect damage such as pH disturbance and oxygen radical formation. Genes discovered through this transcriptional approach may be additional candidates for understanding gossypol detoxification and coping with gossypol-induced stress. In a generalist herbivore that has evolved transcriptionally-regulated responses to a variety of different plant compounds, hormesis may be due to a lower induction threshold of growth-promoting, stress-coping responses and a higher induction threshold of detoxification pathways that are costly and cause collateral damage to the cell.</p

    Clearance of viable Mycobacterium ulcerans from Buruli ulcer lesions during antibiotic treatment as determined by combined 16S rRNA reverse transcriptase /IS 2404 qPCR assay.

    Get PDF
    INTRODUCTION: Buruli ulcer (BU) caused by Mycobacterium ulcerans is effectively treated with rifampicin and streptomycin for 8 weeks but some lesions take several months to heal. We have shown previously that some slowly healing lesions contain mycolactone suggesting continuing infection after antibiotic therapy. Now we have determined how rapidly combined M. ulcerans 16S rRNA reverse transcriptase / IS2404 qPCR assay (16S rRNA) became negative during antibiotic treatment and investigated its influence on healing. METHODS: Fine needle aspirates and swab samples were obtained for culture, acid fast bacilli (AFB) and detection of M. ulcerans 16S rRNA and IS2404 by qPCR (16S rRNA) from patients with IS2404 PCR confirmed BU at baseline, during antibiotic and after treatment. Patients were followed up at 2 weekly intervals to determine the rate of healing. The Kaplan-Meier survival analysis was used to analyse the time to clearance of M. ulcerans 16S rRNA and the influence of persistent M ulcerans 16S rRNA on time to healing. The Mann Whitney test was used to compare the bacillary load at baseline in patients with or without viable organisms at week 4, and to analyse rate of healing at week 4 in relation to detection of viable organisms. RESULTS: Out of 129 patients, 16S rRNA was detected in 65% of lesions at baseline. The M. ulcerans 16S rRNA remained positive in 78% of patients with unhealed lesions at 4 weeks, 52% at 8 weeks, 23% at 12 weeks and 10% at week 16. The median time to clearance of M. ulcerans 16S rRNA was 12 weeks. BU lesions with positive 16S rRNA after antibiotic treatment had significantly higher bacterial load at baseline, longer healing time and lower healing rate at week 4 compared with those in which 16S rRNA was not detected at baseline or had become undetectable by week 4. CONCLUSIONS: Current antibiotic therapy for BU is highly successful in most patients but it may be possible to abbreviate treatment to 4 weeks in patients with a low initial bacterial load. On the other hand persistent infection contributes to slow healing in patients with a high bacterial load at baseline, some of whom may need antibiotic treatment extended beyond 8 weeks. Bacterial load was estimated from a single sample taken at baseline. A better estimate could be made by taking multiple samples or biopsies but this was not ethically acceptable

    Functional Characterization of the Dendritically Localized mRNA Neuronatin in Hippocampal Neurons

    Get PDF
    Local translation of dendritic mRNAs plays an important role in neuronal development and synaptic plasticity. Although several hundred putative dendritic transcripts have been identified in the hippocampus, relatively few have been verified by in situ hybridization and thus remain uncharacterized. One such transcript encodes the protein neuronatin. Neuronatin has been shown to regulate calcium levels in non-neuronal cells such as pancreatic or embryonic stem cells, but its function in mature neurons remains unclear. Here we report that neuronatin is translated in hippocampal dendrites in response to blockade of action potentials and NMDA-receptor dependent synaptic transmission by TTX and APV. Our study also reveals that neuronatin can adjust dendritic calcium levels by regulating intracellular calcium storage. We propose that neuronatin may impact synaptic plasticity by modulating dendritic calcium levels during homeostatic plasticity, thereby potentially regulating neuronal excitability, receptor trafficking, and calcium dependent signaling

    mTOR: from growth signal integration to cancer, diabetes and ageing

    Get PDF
    In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.National Institutes of Health (U.S.)Howard Hughes Medical InstituteWhitehead Institute for Biomedical ResearchJane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)Human Frontier Science Program (Strasbourg, France

    Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development

    Get PDF
    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development
    corecore